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Increase and Decrease of the Effective Conductivity
of Two Phase Composites due to Polydispersity
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We present a two-dimensional mathematical model of a composite material
with conducting inclusions (fibers) embedded in a matrix. Our main objective is
to study how polydispersity (two different sizes of particles) affects the overall
conductivity of the composite. If the conductivity of inclusions is higher than
the conductivity of the matrix, then previous studies suggest an increase of
the effective conductivity due to polydispersity. We show that for high volume
fraction when inclusions are not well-separated and percolation effects play
a significant role, polydispersity may result in either an increase or decrease
of the effective conductivity. Our proof is based on the method of functional
equations and it provides sufficient conditions for both the increase and the
decrease of the effective conductivity.

KEY WORDS: Effective conductivity; polydispersity; random composite mate-
rial; functional equation.

1. INTRODUCTION

We consider the problem of determining the effective conductivity of po-
lydispersed fiber composites when inclusions (unidirectional fibers) of con-
ductivity λi of two different sizes are randomly embedded in a matrix
of conductivity λm. A cross-section of such composite is presented in the
Fig. 1. The inclusions are modeled by disks of two different radii Rl
(large) and Rs (small), Rl �Rs.

We introduce a polydispersity parameter p, 0<p<1, which character-
izes the relative volume fraction of small disks (p= 0 all disks are large,
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Fig. 1. Bimodal composite.

p = 1 all disks are small) for a fixed total volume fraction of disks v;
that is, pv is the total volume fraction of small disks. Our main objective
is to obtain the analytical dependence of the effective conductivity λ̂poly
on the polydispersity parameter p. This allows for qualitative and quan-
titative comparison of the effective conductivities of the poly- and mono-
dispersed composites λ̂poly(p) and λ̂mono = λ̂poly(0)= λ̂poly(1).

There is considerable interest in the effect of polydispersity on both
the effective conductivity λ̂ and the effective viscosity µ̂ of suspension
of rigid inclusions in a fluid (see refs. 7, 11, 14–16, 27). For a Stokes
fluid these problems are very similar in nature. The main question here is
whether the presence of polydispersity results in an increase or decrease of
the effective conductivity (for the sake of definiteness we assume hereafter
that λi >λm). Theoretical results on this subject reviewed below point to
an increase (see (1) below). This question is of significant practical inter-
est; when polymer/ceramic composites are prepared for capacitors or ther-
mal insulting packages(14,15), should the ceramic powder be monodispersed
or polydispersed to achieve desired (e.g. high) dielectric or thermal prop-
erties. How significant is the effect of polydispersity? Limited experimental
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data(7,11,14–16,27,28) are inconclusive and point to an increase(28) when the
concentration of inclusions is not high. Numerical examples presented in
ref. 5 show the decrease (see (3)) when most of the inclusions are large and
the total concentration is high. It was suggested in ref. 5 that this decrease
is due to percolation effects when small inclusions may not participate in
the conducting cluster and their presence effectively reduces the total vol-
ume fraction of inclusions. However, this suggestion was not supported by
theoretical analysis. In this paper we have developed mathematical models
which show that both the increase and decrease occur and provide suffi-
cient conditions for each type of the effective behavior.

Most theoretical works on this subject study polydispersity in the
dilute limit case. Thovert et al.(30,31) (see also ref. 29) applied the tech-
niques of variational bounds(21) to estimate λ̂poly in the low concentra-
tion regime in both two and three dimensions. They performed rigorous
asymptotic analysis as v→ 0 and evaluated the terms of order O(v) and
O(v2) in the expansion of λ̂poly in powers of v, where v is the total vol-
ume fraction of the inclusions. Moreover, they perform partial analysis of
the cubic term. The analysis of refs. 29–31 shows that if the conductivity
of inclusions is greater than the conductivity of matrix (λi>λm), then

λ̂poly>λ̂mono. (1)

The key ingredient of the analysis of refs. 29–31 is an observation that the
three- and four-point lower bounds on λ̂poly and λ̂mono provide a good
approximation of the effective conductivity when the contrast parameter

ρ= λi −λm
λi +λm , (2)

introduced by Bergman(3), is not large. Note that formulas for λ̂poly
derived in refs. 29–31 provide good numerical results for v<vcr where vcr
is the percolation threshold.

Robinson and Friedman in ref. 28 considered the problem of the
effective conductivity for spherical inclusions of two different sizes in three
dimensions. Their derivation of the effective conductivity is based on the
Maxwell–Garnett formula. Note that the Maxwell–Garnett formula is an
approximation in v for small v.(21) This formula was derived as an approx-
imation for the dilute limit case when interactions between inclusions are
small (see ref. 21, Chapter IX). While it is known that for special geo-
metric arrays the Maxwell–Garnett formula holds for fairy large concen-
trations (e.g. for periodic structure(2)) and other well-separated geometries
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(see ref. 21, Section 10.4) in general it only holds to the second order in
v for macroscopically isotropic composites (see ref. 21, p. 192). In partic-
ular, the Maxwell–Garnett approximation may not hold for high volume
fractions in the presence of pronounced percolation effects, when the con-
ductivity patterns dominate the behavior.

Also for a model of a medium with randomly located identical cir-
cular disks (shaking model) it follows from ref. 4 (see formulas (5.1) and
(5.4)) that linear and quadratic terms of the Maxwell–Garnett formula
do not depend on the random locations and are determined solely by
the total volume fraction and material properties. However, it also fol-
lows from these formulas that the cubic term in v depends on the ran-
dom locations of inclusions. Hence, this model provides an example of
a composite, with inclusions that are not well-separated, for which the
Maxwell–Garnett formula is incorrect in the third order.

In the present paper we model randomness by introducing shak-
ing parameters which characterise the random locations of the centers of
the disks (see Section 4 for precise definition). We propose two models:
(i) the “bumping model”, and (ii) “the well-separated model”. The model
(i) describes random geometrical arrays when inclusions are highly packed
and not well-separated. The key ingredient of this model is the introduc-
tion of two shaking parameters dl and ds (depending on the sizes of the
inclusions) for large and small disks, respectively. The only restriction on
dl and ds is that the disks cannot overlap (but can be very close to each
other). In the “the well-separated model” the shaking parameter is the
same for large and small disks. Model (ii) clearly can be applied in the
dilute case and it is not surprising that this model leads to the same con-
clusion (1). However, the central result of our work is that the model (i)
predicts regimes where either (1) or the opposite inequality

λ̂poly<λ̂mono (3)

holds, depending on the value of the polydispersity parameter p (the rel-
ative volume fractions of large and small disks). This result is consistent
with percolation analysis of checkerboard models with cells of two differ-
ent sizes (L. Berlyand, A. Pisztora, unpublished) and a numerical example
in ref. 5.

Our analysis is based on the method of functional equations proposed
in refs. 13, 26 and further developed for periodic media in refs. 4, 22 and
25. We generalize this method for polydispersed geometries. The key tech-
nical point is to incorporate parameter νk (defined in (4)) into a series
expansion for the solutions of the functional equations. Note that these



Increase and Decrease of the Effective Conductivity 485

expansions are equivalent to successive approximations to functional equa-
tions. This observation implies the convergence of the series for the effec-
tive conductivity and electric potential by using convergence results for
successive approximations of solutions to general functional equations.

2. FORMULATION OF THE BOUNDARY VALUE PROBLEM

Consider a periodic two-dimensional lattice Q which is defined by the
two fundamental translation vectors 1 and i(i2 =−1) in the complex plane
C∼=R2 of the complex variable z=x+ iy. The zeroth cell Q(0,0) is the unit
square {z=x+ iy∈C :−1/2<x,y<1/2}. The lattice Q consists of the cells
Q(m1,m2) =Q(0,0) +m1 + im2. Assume that the zeroth cell Q(0,0) contains
mutually nonoverlapping disks Dk (inclusions) of radii rk centered at ak
that is Dk :={z∈ C : |z−ak|<rk}(k= 1,2, . . . ,N). The radii rk take one of
the two values Rs and Rl (Rs �Rl , small and large disks). Let us introduce
a variable

νk = r2
k R

−2
l (4)

which assumes one of the two values 1 and a parameter

χ = (Rs/Rl)
2. (5)

The total volume fraction (concentration) of the inclusions is

v=Nπ(R2
sp+R2

l (1−p)), (6)

where p is the relative volume fraction of the disks of radius Rs. We also
introduce the notations for the circumference of the disks Tk :={z∈C : |z−
ak|= rk, and for the part of the unit square occupied by the matrix Ω :=
Q(0,0)\

(∪N
k=1Dk ∪Tk

)
.

We study the conductivity of the doubly periodic composite material,
when the domains Ω (matrix) and Dk (inclusions) are occupied by materi-
als of conductivities λm and λi, respectively (Fig. 1). The potential u(x, y)
satisfies the Laplace equation

�u=0 in∪Nk=1Dk ∪Ω (7)

with the conjugation conditions:

u+ =u−, λm
∂u+

∂n
=λi ∂u

−

∂n
on Tk, k=1,2, . . . ,N, (8)



486 Berlyand and Mityushev

where ∂
∂n

is the outward normal derivative and

u+(ξ, η) := lim
x+iy→ξ+iη,x+iy∈Ω

u(x, y),

u−(ξ, η) is introduced in a similar way with ξ + iη∈Tk, k=1,2, . . . ,N. We
also impose on u(x, y) the quasi periodicity conditions which correspond
to an external field applied in the x-direction

u(x+1, y)=u(x, y)+1, u(x, y+1)=u(x, y). (9)

Our main objective is to find the analytical dependence of the effective
conductivity defined as follows (ref. 9, p. 15, ref. 21)

λ̂=
∫

Q(0,0)

λ(x, y)|∇u|2 dx dy=λm
∫

Ω

ux dx dy+λi
N∑

k=1

∫

Dk

ux dx dy (10)

on parameters p and χ which characterize polydispersity. In Section 3
we compute λ̂ for an arbitrary deterministic array of inclusions. In (10)
λ(x, y) = λm, if (x, y)∈Ω, and λ(x, y)=λi , if (x, y)∈Di . In Section 4 we
consider analogous problems for random locations of ak and random dis-
tributions of the disk’s radii rk, and obtain an analogous dependence in
this random setting (which is a much harder problem).

It is convenient to rewrite problem (7)–(9) in terms of complex poten-
tials ψ(z) and ψk(z) which are analytic in Ω and Dk, respectively, and
continuous in the closures of Ω and Dk, refs. 1, 4.

ψ(z)= ∂u

∂x
− i ∂u

∂y
−1, z∈Ω, ψk(z)= λi +λm

2λm

(
∂u

∂x
− i ∂u

∂y

)
, z∈Dk.

(11)

Straightforward calculations imply from (9) and (11) that

ψ(z+1)=ψ(z)=ψ(z+ i). (12)

The two real conditions (8) yield (see ref. 26 and Appendices A and B
from ref. 4)

ψ(t)=ψk(t)+ρ
(

rk

t−ak

)2

ψk(t)−1,

|t−ak|= rk, k=1,2, . . . ,N, (13)
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where ρ= (λi − λm)/(λi + λm). The Eqs. (12) and (13) form a generaliza-
tion of the Riemann–Hilbert problem for the unknown functions ψ and
ψk (also known as the R-linear problem, ref. 26). A conventional way
to solve such problems is to reduce them to integral equations and then
solve numerically. Following ref. 4 we next show that this problem can
be reduced to a system of functional equations. In the remaining part of
this section we solve this system analytically in series in R2

l . The analytical
dependence on R2

l has been justified in refs. 22 and 25.
The boundary value problem (13) can be reduced to a system of func-

tional equations

ψq(z) =ρ
N∑

k=1

∑∗
m1,m2

(Wm1m2kψk)(z)+1, |z−aq |� rq,
q=1,2, . . . ,N, (14)

where
∑∗
m1,m2

is taken over all integer m1 and m2 except m1 =m2 =0 for
k=q. Operator Wm1m2k is defined as follows

(Wm1m2kψk)(z)=
(

rk

z−ak −m1 − im2

)2

ψk

(
r2
k

t−ak −m1 − im2
+ak

)

.

(15)

The properties of this operator and the reduction of (13) to (14) are out-
lined in Appendix A.

We seek the solution of functional Eq. (14) in form of power series
in R2

l

ψm(z)=
∞∑

q=0

ψ
(q)
m (z)

(
R2
l

)q
, m=1,2, . . . ,N. (16)

Then the coefficients ψ(q)m (z) are analytic in z and depend on Rs as a
parameter. (Expansion in R2

s yields the same result.) We next write each
function ψ

(q)
m (z) in the form of Taylor series

ψ
(q)
m (z)=

∞∑

n=0

ψ
(q)
nm (z−am)n, m=1,2, . . . ,N. (17)
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We then have

∑

m1,m2

(Wm1m2mψ
(q)
m )(z) =

∑

m1,m2

∑∞
n=0

ψ
(q)
nm

r
2(n+1)
m

(z−am−m1 − im2)
n+2

=
∑∞

n=0
ψ
(q)
nm r

2(n+1)
m En+2(z−am), (18)

where En(z) is the modified Eisenstein’s function of order n (for details see
(B.2) and (B.7)). Convergence of the series in (18) follows from general
results from the method of functional equations(25,26). Substituting (16),
(17) in (14) and using (18), (4) we obtain the relation

∞∑

q=0

ψ
(q)
m (z)R

2q
l =ρ

N∑

k=1

∞∑

n=0

∞∑

q=0

ψ
(q)
nk R

2(q+n+1)
l νn+1

k En+2(z−ak)+1,

|z−ak|� rm, m=1,2, ...,N. (19)

Equating the coefficients of like powers of R2
l in (19) we arrive at the fol-

lowing theorem in which we determine ψ(q)k (z) recursively and thus define
the solution ψk(z) of the functional Eq. (14) (compare with Theorem 3.4
from ref. 4):

Theorem 2.1. Let ψk(z) be a solution of functional Eq. (14). Then
it admits the representation (16), where

ψ
(0)
k (z)=1,

ψ
(q+1)
k (z)=ρ

[
ψ
(q)

0k νkE2(z−ak)+ψ(q−1)
1k ν2

kE3(z−ak)+· · ·

+ψ(1)
q−1,kν

q
k Eq+1(z−ak)

]
, q=0,1,2, · · · .

(20)

Here ψ(q)lk is the lth coefficient of the Taylor expansion of ψ(q)k (z) (see 17)).
The function ψk(z) is represented in the form of the uniformly convergent
series (16) in the closure of Dk.

From (20) we obtain explicit formulas

ψ(1)m (z)=ρ
N∑

k=1

νkE2(z−ak), (21)

ψ(2)m (z)=ρ2
N∑

k,k1

νkνk1E2(ak −ak1)E2(z−ak),
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ψ(3)m (z) = ρ3
N∑

k,k1,k2

νkνk1νk2E2(ak −ak1)E2(ak1 −ak2)E2(z−ak2)

−2ρ2
N∑

k,k1

ν2
k νk1E3(ak −ak1)E3(z−ak)

and so on.
Thus, we have determined the functions ψk(z) in (11) recursively; it is

shown in the next section that these functions determine the effective con-
ductivity, so that it is not necessary to define ψ(z).

3. EFFECTIVE CONDUCTIVITY

The local relation between the flux q and the gradient ∇u in the unit
cell Q(0,0) is given by Fourier’s law in thermal conductivity or Ohm’s law
in electric problems

q =
{
λm∇u in Ω

λi∇u in ∪N
k=1Dk.

(22)

The effective conductivity tensor in two dimensions

Λ=
(
λ̂x λ̂xy

λ̂xy λ̂y

)
(23)

relates the averaged values over the unit cell of the flux and the gradient

q̂ =Λ∇̂u. (24)

In (24) the superscript ˆ stands for the integral over Q(0,0). In order to
determine Λ it is sufficient to solve two cell problems(9) when the external
field applied either in the x- (see (7) and (8)) or y-direction. Let ψk(z) be
the complex potential corresponding to the problem (7) and (8). Then we
have(4,20,25)

λ̂x − iλ̂xy =1+2ρ
N∑

k=1

πr2
k ψk(ak). (25)

For simplicity we assume that our composite material is macroscopically
isotropic. Then the effective tensor Λ is of the form Λ= λ̂I , where λ̂ is the
effective conductivity and I is the unit tensor. In this case (25) becomes
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λ̂=1+ 2ρv
K1(χ)N

N∑

k=1

νkψk(ak), (26)

where v is the total volume fraction of inclusions and

K1(χ)=χp+1−p. (27)

Here χ has the form (5). Using (16) and (26) we write λ̂ in the form of a
series in the total volume fraction v

λ̂=1+2ρv
[
B0 +B1v+B2v

2 +· · ·
]
, (28)

where

Bq = 1

πqNq+1K
q+1
1 (χ)

N∑

m=1

νmψ
(q)
m (am), q=0,1, . . . (29)

In order to evaluate ψ(q)m we introduce

Zk0,k1,...,kM
p1,p2,...,pM

=Ep1(ak0 −ak1)Ep2(ak1 −ak2) · · ·CM−1EpM (akM−1 −akM ),

where C is the complex conjugation operator, M = 1,2,3, . . . ; kj can
assume the values 1,2, . . . ,N ; pj =1,2,3, . . . . Let P =p1 +p2 +· · ·+pM −
M+1 and introduce

Xp1,p2,...,pM = 1
K1(χ)

P

∑

k0,k1,...,kM

νk0ν
p1−1
k1

· · · νpM−1
kM

Zk0,k1,...,kM
p1,p2,...,pM

. (30)

In accordance with (20), νk0 corresponds to νk from (26) and each func-
tion En from (20) has the coefficient νq−1

k . Combining (28)–(30) we obtain
the coefficients in (28):

B0 =1, B1 = ρ

πN2
X2, B2 = ρ2

π2N3
X22,

B3 = 1
π3N4

[
−2ρ2X33 +ρ3X222

]
. (31)

It is possible to proceed and calculate the next coefficients Bq , q > 3. It
follows from Theorem 2.1 that Bq has the following structure
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Bq =
∑

p1,p2,...,pM ;k0,k1,...,kM

βq,p1,p2,...,pM

νk0ν
p1−1
k1

· · · νpM−1
kM

K1(χ)
P

Zk0,k1,...,kM
p1,p2,...,pM

,

(32)

where the constants βq,p1,p2,...,pM depend only on ρ and N . For instance,
B1 involves only one term of the type (30) with the coefficient β12 = ρ

πN2

(see the second equality in (31)).

Remark 3.1. For each given q,p1, p2, . . . , pM the coefficient
βq,p1,p2,...,pM can be obtained in explicit form. However, for forthcom-
ing analysis of random models a constructive algorithm for βq,p1,p2,...,pM

which follows from (29) and recursive formulas (20) is sufficient.

From (32) and (30) it follows that Bq is a sum of Xp1,p2,...,pM with
coefficients depending only on ρ and N . Each term Xp1,p2,...,pM is a
sum of Zk0,k1,...,kM

p1,p2,...,pM , which depend only on the locations of the centers
ak0 , ak1 , . . . , akM . The coefficients νk0ν

p1−1
k1

· · · νpM−1
kM

K1(χ)
−P depend only

on the radii of the inclusions. This decomposition of Bq holds for each
parameters ρ, ak, Rl , Rs for which the inclusions Dk do not overlap.

4. EFFECTIVE CONDUCTIVITY OF A RANDOM POLYDISPERSED

COMPOSITE

In this section we apply the formulas from Section 3 and previous
results(4) to evaluate the effective conductivity of an isotropic random
composite material. The total volume fraction v is always fixed. We con-
sider two different types of random variables. First, the value (4) is con-
sidered as a discrete random variable defined on the set of indices k =
1,2, . . . ,N which enumerate disks, so

νk =
{
χ = (Rs/Rl)

2 with the probability p,
1 with the probability 1−p. (33)

The notation E[·] is used for the expectation of νk in the probability space
of Bernoulli sequences of length N . Next we introduce random variables
ak (k = 1,2, . . . ,N), which describe the random position of the centers.
These variables ak (k= 1,2, . . . ,N) are independent and their distribution
can be described as follows. Consider the basic periodicity cell Q(0,0) and
suppose that the cell contains N = n2 inclusions, where n is an integer
number. Partition Q(0,0) into N equal subcells so their centers bk form a
square array in Q(0,0). For example, if N = 4 we have b1 = 1

4 (1 + i), b2 =
1
4 (−1+ i), b3 = 1

4 (−1− i), b4 = 1
4 (1− i).
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The probability distribution of ak, k=1,2, . . . ,N is defined as follows.
In each subcell introduce the “shaking disk” Gk :={z∈ C : |z−bk|<dk} of
radius dk centered at bk. The location of the point ak (center of the disk
Dk) is randomly chosen within the disk Gk with the density (πdk)

−1 =
|Gk|−1 of the equiprobable distribution. Since we assume that each disk
(inclusion) Dk lies in a subcell of size length 1√

N
the shaking parameter

dk must satisfy the natural condition 2(dk + rk)< 1√
N

, where rk =√
νkRl is

the random variable defined by the random variable νk from (33) (Fig. 2).
Hence, we have

dk + rk < 1

2
√
N
. (34)

It will be clear that in the two models described below inequality (34) rep-
resents the non-overlapping of the disks Dk which models impenetrable
inclusions. We will consider two models of polydispersity: well-separated
model in which all shaking parameters dk are identical and the bumping
model in which shaking parameters dk are determined by the sizes of the
inclusions.

Fig. 2. Shaking of inclusions within small squares.
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Below we consider functions f (a1, a2, . . . , aN ; ν1, ν2, . . . , νN) , where
ν1, ν2, . . . , νN are independent random variables defined above. The ran-
dom variables a1, a2, . . . , aN are mutually independent, but may depend on
ν1, ν2, . . . , νN . Denote by

F(ν1, ν2, . . . , νN)=〈f (a1, a2, . . . , aN ; ν1, ν2, . . . , νN)〉

the expectation of f as a function of the random variables a1, a2, . . . , aN
(νk, k=1,2, . . . ,N are parameters). More precisely, 〈·〉 means the expecta-
tion in the probability space defined as a product of the probability spaces
of each ak. Further, one can calculate the expectation

E[F(ν1, ν2, . . . , νN)]=E[〈f (a1, a2, . . . , aN ; ν1, ν2, . . . , νN)〉] (35)

with respect to random variables ν1, ν2, ..., νN . Note that it is possible to
define a probability space which corresponds to a joint distribution of all
ak and νk and introduce a corresponding “double” expectation in all of
these random variables. This double expectation leads to the same result
as consecutive expectations (35). This model is a generalization of the po-
lydispersed case of the analogous shaking model introduced in ref. 4 for
monodispersed random composites where only the expectation 〈·〉 was used.

Since our objective is to provide comparison between poly- and
mono-dispersed composites, we review briefly the results of ref. 4 using
notations from this paper. If the disks are identical, then χ =1 in (5) and
(28) becomes

λ̂=1+2ρv
[
1+A1v+A2v

2 +· · ·
]
, (36)

where Aq = Bq |χ=1. The effective conductivity λ̂ has been calculated in
ref. 4. In particular the following representation has been obtained

Aq =
∑

p1,p2,...,pM ;k0,k1,...,kM

βq,p1,p2,...,pMZ
k0,k1,...,kM
p1,p2,...,pM

, (37)

where βq,p1,p2,...,pM are defined by (29), (32) (and are not random). Note
that the coefficients βq,p1,p2,...,pM and Z

k0,k1,...,kM
p1,p2,...,pM are the same in (32)

(polydisperse) and (37) (monodisperse). The following results has been
established in ref. 4.

Theorem 4.1. Suppose that the centers ak are equiprobabaly located
in the shaking disks Gk of the equal radii (d1 = d2 = · · · = dN = d). Then
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〈Zk0,k1,...,kM
p1,p2,...,pM 〉 is represented in the form of the power series in d2

〈Zk0,k1,...,kM
p1,p2,...,pM

〉=
∞∑

s=0

γ k0,k1,...,kM
p1,p2,...,pM

(s)d2s . (38)

Moreover, the following inequality holds

βq,p1,p2,...,pM γ
k0,k1,...,kM
p1,p2,...,pM

(s)�0 (39)

for all q,p1, p2, . . . , pM ; k0, k1, . . . , kM ; and s=0,1,2, . . . .

Remark 4.2. The coefficients γ
k0,k1,...,kM
p1,p2,...,pM (s) are defined in ref. 4

with 〈Zk0,k1,...,kM
p1,p2,...,pM 〉 = π2d4J ∗

p1,p2,...,pM
. More precisely, (38) were presented

in(4) in the form (see Appendix D from ref. 4 and, in particular, Lemma
6.2 for details)

〈Zk0,k1,...,kM
p1,p2,...,pM

〉=
∑

s0,...,sM

�k0,k1,...,kM
p1,p2,...,pM

(s0, . . . , sM)d
2(s0+···+sM−1). (40)

Remark 4.3. In ref. 4 (39) was proved for s=1,2, . . . . Since s=0 is
necessary for polydispersed case, we prove it in Appendix C.

Remark 4.4. Inequality (39) is very useful. For example, by com-
bining (36)–(39) the following extremal property of the regular array was
proven:(4)

λ̂(d=0) < λ̂(d >0). (41)

According to (35) we define the effective conductivity of a random
polydispersed composite λ̂poly by averaging λ̂ (see (10)) over random loca-
tions and random radii

λ̂poly =E[〈λ̂〉]. (42)

Taking the expectation 〈·〉 and E[·] in (28) we obtain (see the first formula
(31) for B0)

λ̂poly =1+2ρv
(

1+E[〈B1〉]v+E[〈B2〉]v2 +· · ·
)
, (43)

where 0 < v < vmax and vmax = π
4 (pχ + 1 − p) corresponds to touching

inclusions. Below we investigate the dependence of λ̂poly on p for fixed
χ = (Rs/Rl)

2. Then in this case we have vmax = πχ
4 .
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4.1. Well-Separated Model (Identical Shaking Parameters)

In the present subsection we assume that all shaking parameters are
identical, that is

d1 =d2 =· · ·=dN =d, (44)

where

d+Rl < 1

2
√
N
. (45)

We calculate λ̂ using (43) and (44). In order to calculate E[〈Bq〉] we use
(32) and (27)

E[〈Bq〉] =∑p1,p2,...,pM ;k0,k1,...,kM
βq,p1,p2,...,pME

[
νk0ν

p1−1
k1

...ν
pM−1
kM

K1(χ)
P

]

〈Zk0,k1,...,kM
p1,p2,...,pM 〉, (46)

taking into account the following properties: (i) E[〈βq,p1,p2,...,pM 〉] =
βq,p1,p2,...,pM , since βq,p1,p2,...,pM does not depend on νk and ak;
(ii) the values Z

k0,k1,...,kM
p1,p2,...,pM do not depend on the random values νk,

k = 1,2, . . . ,N , hence E[Zk0,k1,...,kM
p1,p2,...,pM ] = Z

k0,k1,...,kM
p1,p2,...,pM and therefore

E[〈Zk0,k1,...,kM
p1,p2,...,pM 〉]=〈Zk0,k1,...,kM

p1,p2,...,pM 〉; (iii) 〈νk0ν
p1−1
k1

. . . ν
pM−1
kM

〉=νk0ν
p1−1
k1

. . . ν
pM−1
kM

,
since the random variables νk do not depend on ak.

Recall that for the monodispersed case we have(4)

λ̂mono =〈λ̂〉=1+2ρv
(

1+〈A1〉v+〈A2〉v2 +· · ·
)
, (47)

where

〈Aq〉=
∑

p1,p2,...,pM ;k0,k1,...,kM

βq,p1,p2,...,pM 〈Zk0,k1,...,kM
p1,p2,...,pM

〉 (48)

and 0<v<vmax, vmax =π/4 corresponds to touching inclusions. In order
to compare λ̂mono and λ̂poly defined by (43) and (47), respectively, we fix
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the values of the concentration v and the shaking parameter d in both for-
mulas. Then it is sufficient to compare corresponding coefficients given by
(46) and (48) which differ only by the factor

wp1,p2,...,pM :=
E
[
νk0ν

p1−1
k1

· · · νpM−1
kM

]

K1(χ)
P

. (49)

For simplicity we first compute (49) assuming that all subscripts
k0, k1, . . . , kM in (49) are different, then the corresponding random vari-
ables νk0 , νp1−1

k1
, . . . , νpM−1

kM
are also different and therefore independent.

Hence, (49) implies

wp1,p2,...,pM = Kp1−1(χ)Kp2−1(χ) . . .KpM−1(χ)

K
p1−1
1 (χ)K

p2−1
1 (χ) . . .K

pM−1
1 (χ)

, (50)

where the following moments are introduced (see (5))

E[νqk ]=Kq(χ)=χqp+1−p, q=1,2, . . . (51)

If in (49) ki = kj for some i �= j , we also arrive at an analogous formula
(49) which requires more cumbersome notations.

We now consider the function

f (χ) := Kj(χ)

[K1(χ)]j
= χjp+1−p
(χp+1−p)j , j =1,2, . . . (52)

From (5) it follows that χ ∈ [0,1] and therefore f (χ) decreases on the
interval [0,1] from (1−p)−j+1 to 1. Since wp1,p2,...,pM is obtained by mul-
tiplication of the factors of the form (52), we have

wp1,p2,...,pM �1. (53)

Moreover, equality in (53) is attained in two cases (i) χ = 1 (when p =
0) that is no polydispersity present; (ii) p1 =p2 = · · · =pM = 2 (see (50)).
It follows from inequality (53) that E[< Bq >] � 〈Aq〉. This yields the
following

Theorem 4.5. Let λ̂mono defined by (47), be the effective conduc-
tivity of a macroscopically isotropic monodispersed composite and λ̂poly
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defined by (42) (see also (43)), be the effective conductivity of a macro-
scopically isotropic polydispersed composite. Then for any fixed d, satisfy-
ing the non-overlapping condition (34), the following inequality holds

λ̂mono<λ̂poly (54)

for any relative concentration p of the small inclusions and for any fixed
total volume fraction v.

Remark 4.6. Theorem 4.5 was proved for a fixed value of the shak-
ing parameter d. However, it can be easily generalized to the case when
the shaking parameters dk, k = 1,2, . . . ,N , are i. i. d.’s in the interval
[dmin, dmax]. This is the most general case of identical shaking, since dk do
not depend on radii of the disks unlike in the bumping model (see the next
section). This model describes the physical situation when inclusions are
well-separated (not too close to touching) and, in particular, it applies to
the dilute case.

4.2. Bumping Model (Two Different Shaking Parameters)

In this section we introduce a model which describes highly packed
composites with inclusions of two different sizes. In such composites
inclusions are often not well-separeted and percolation patterns dominate
the effective behavior. That is why no approach based on the Maxwell–
Garnett formula (and its refinements) will work here.

We now present a heuristic motivation for our model. In high con-
centration regime where inclusions are close to each other and there is not
much room for them to move around, a large inclusion would bump into
another one after relatively small change in the location. However, a small
inclusion is likely to have more room to move around before it bumps
into a neighbouring inclusion. Thus, while in a low concentration (more
generally well-separated) composite it is reasonable to introduce identical
shaking parameters, as we did it in the previous section, for highly packed
random composites it is natural to introduce two different shaking param-
eters ds, dl for small and large inclusions, respectively, such that

dl <d <ds, (55)

where d is the shaking parameter for the monodispersed model intro-
duced in the beginning of the section (at the same total volume frac-
tion). In other words the inequality (55) models the geometric observation
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that small inclusions are more mobile than the large ones. Note that the
validity of this model for highly packed composites is supported by the
percolation analysis of a random checkerboard with squares of two differ-
ent sizes (L. Berlyand, A. Pisztora, unpublished). As we will see below
our model leads to S-shape dependence of the effective conductivity on
the polydispersity parameter (for a fixed total volume fraction), that is (1)
holds for p close to one, (3) holds for small p (see Figure 3). Also (3)
agrees with the numerical example from ref. 5, in which the decrease in
the effective conductivity was observed for a mixture of large and small
particles when p is small.

In L. Berlyand, A. Pisztora (unpublished) geometric patterns of small
and large inclusions embedded in a matrix are modeled. No particular
physical properties were considered and the connectivity of such patterns
was the main objective. For identical inclusions randomly embedded in
a matrix, random checkerboard models of black (inclusions) and white
(matrix) squares were succesfully used in the study of both the connectiv-
ity patterns and physical properties such as conductivity, viscosity, elastic
modulas etc. (see refs. 6, 9 and 12)

It was proposed in L. Berlyand, A. Pisztora (unpublished) to use a
random checkerboard with black squares of two different sizes to model a
polydispersed medium. It was shown that the density of the infinite cluster
of black squares can either increase or decrease depending on the relative

Fig. 3. Dependence of the effective conductivity λ̂mono on the relative volume fraction of
the small inclusions p for monodispersed composites, broken line; and for polydispersed
composites λ̂poly, solid and dot-dashed line, in the case of high concentrations of inclusions.
Solid line is rigorously justified, dot-dashed is supported by numerical results, χ= (Rs/Rl)

2 is
fixed.
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volume fraction of small and large black squares (total volume fraction of
all black squares is fixed, when it is above the percolation threshold). This
conclusion supports our main result, Theorem 4.7.

In order to compare λ̂mono and λ̂poly we compare the expectation
E[〈·〉] of the corresponding coefficients (32) and (37). Recall that E[〈·〉] cor-
responds to subsequent avaraging over random locations of the centers ak
(shaking parameters) followed by averaging over random sizes νk of the
disks Dk.

We first calculate 〈Bq〉. This amounts to replacement of d2(s0+···+sM)
in (40) by

νk0ν
p1−1
k1

· · · νpM−1
kM

K1(χ)
P

dk0d
p1−1
k1

· · ·dpM−1
kM

, kj =1,2, . . . ,N; M=1,2,3, . . .

(56)

Next, we take the expectation E[·] in (56)

E




νk0ν

p1−1
k1

· · · νpM−1
kM

K1(χ)
P

dk0d
p1−1
k1

· · ·dpM−1
kM



 . (57)

Since each index k0, k1, . . . , kM takes one of the values 1,2, . . . ,N and M

is any natural number, there may be repeated indices among k0, k1, . . . , kM .
We select the repeated indices and using the independence of the random
variables νk (dk(νk)) decompose (57) into a product of terms in the follow-
ing form

E

[
ν
j
k

K
j

1 (χ)
d
j
k

]

= pχjd
j
s + (1−p)djl

(pχ + (1−p))j . (58)

Therefore, comparison of λ̂poly and λ̂mono amounts to comparison of
the terms

ω(ds, dl)=
pχjd

j
s + (1−p)djl

(pχ + (1−p))j and ω(d, d)=dj . (59)

We do this for two limit cases: for sufficiently small p (p ∼ 0, i.e.,
almost all disks are large) and for p closed to 1 (p∼ 1, i.e., almost all
disks are small) for fixed χ . Due to (55) we obtain

ω(ds, dl)=djl <dj as p∼0; ω(ds, dl)=djs >dj as p∼1. (60)
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In order to compare λ̂poly and λ̂mono for the same total concentration v,
we first fix all parameters corresponding to the monodispersed composite,
i.e., either the radius R of the disks, or the number of the subcells (disks)
per unit cell, N . These values depend on each other through the relation
v=NπR2. For the polydisperse composite we use the same v and N and
choose the relative volume fraction p (0 �p� 1) and the parameter χ =
(Rs/Rl)

2. The radii Rs and Rl are then determined by solving the system
of Eqs. (5) and (6).

Secondly, we chose the following shaking parameters

d= 1

2
√
N

−R, (61)

ds = 1

2
√
N

−Rs, dl = 1

2
√
N

−Rl. (62)

These relations mean that we take the maximum possible shaking param-
eters within the framework of the non-overlapping model. Our parameters
are consistent in the following sense. If p goes to 0 or 1, or if χ→1, then
a polydispersed composite becomes a monodispersed one.

In Theorem 4.7 below, we compare λ̂poly with the constant λ̂mono
for any p and χ . This theorem follows from the comparison of (59) and
(60) established above. Fig. 3 illustrates this comparison for a fixed χ and
shaking parameters (61) and (62).

Theorem 4.7. Let λ̂mono defined by (47), be the effective conduc-
tivity of a macroscopically isotropic monodispersed composite and λ̂poly
defined by (42), be the effective conductivity of a macroscopically isotropic
polydispersed composite (see also (43)). Then for a fixed v (same total vol-
ume fraction for mono- and poly-dispersed composites) and any shaking
parameters ds, dl , d satisfying the conditions (34) and (55), the following
inequalities hold

λ̂poly<λ̂mono for p∼0; λ̂poly>λ̂mono for p∼1. (63)

5. DISCUSSION

We prove that λ̂poly has different behavior depending on the condi-
tions on the mobility of inclusions (55) and (44). Condition (55) arises
from natural restrictions that at high concentrations disks bump into each
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other, since they are hard and cannot penetrate. This condition implies
behavior displayed in Fig. 3 which also agrees with percolation analysis
of checkerboard models with squares of two different sizes (L. Berlyand,
A. Pisztora, unpublished) and numerical example.(5)

For low concentration regime it is natural that the probability of
bumping is close to zero. Therefore, the shaking parameters should be
equal as in (44). This leads to the behavior described in Fig. 4 and agrees
with rigorous asymptotical analysis for small concentration(29–31).

The same curve (see Fig. 4) was obtained by Robinson and
Friedman(28) using a clever two step application of the Maxwell–Garnett
formula. However, their analysis(28) tacitly uses the assumption of small
concentration, because the Maxwell–Garnett formula is derived for small
concentration only. In particular, no use of this formula is capable of captur-
ing percolation effects. Note that for concentrations above the precolation
threshold vcr connectivity patterns (percolation patterns) dominate behav-
ior of the effective conductivity while for v<vcr the percolation effects are
non-essential and behavior presented in Fig. 4, though rigorously justified
only for small concentrations v�1, is expected to be valid for v<vcr.

We remark that the shaking model has a restriction that each disk is
confined in its own subcell which is why the number of disks in the basic
cell Q(0,0) is always the square of an integer. This restriction is introduced
in order to obtain an analytical solution (series in which all coefficients
are evaluated recursively) which is only possible for very few specific mod-
els. A prominent example of a model which can be treated analytically is

Fig. 4. Dependance of the effective conductivity λ̂ on the relative volume fraction of the
small inclusions p for monodispersed composites (broken line) and for polydespersed com-
posites (solid line) in dilute case.
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the Keller-Dykhne random checkerboard(8,17) where effective conductivity
is given by a simple formula. It is known that qualitative behavior of the
effective properties predicted by such restricted models is usually valid for
much wider class of physical problems.

APPENDIX A

In the present section we outline the main idea of reduction of the
conjugation condition (13) to the functional Eq. (14). For simplicity we
consider one inclusion D1 :={|z|<r} in the unit cell. Then (13) becomes

ψ(t)=ψ1(t)+ρ
( r
t

)2
ψ1(t)−1, t ∈ ∂D1 =L. (A.1)

Introduce the operator

(Pf )(z)= 1
2πi

∫

L

f (t)E1(t− z) dt= 1
2πi

∫

L

f (t)
∑

m1,m2

dt

(t−m1 − im2 − z) ,

(A.2)

where f is a Hölder continuous function on L, z∈D1, E1 is the Eisenstein
function described in Appendix B. We use the Cauchy formula

1
2πi

∫

L

f (t)

t− z dt=
{
f (z), z∈D1,

0, z∈D−
1 ,

(A.3)

where f is analytic in D1 and D−
1 is the complement of D1 to the

extended complex plane. If f is analytic in D−
1 , we have(10)

1
2πi

∫

L

f (t)

t− zdt=
{
f (∞), z∈D1,

−f (z)+f (∞), z∈D−
1 .

(A.4)

We apply the operator P to LHS of (A.1).

Pψ(z) = 1
2πi

∫

L

∑

m1,m2

ψ(t)

t−m1 − im2 − z dt

= 1
2πi

∑

m1,m2

∫

L+m1+im2

ψ(t)

t− z dt+ c0. (A.5)

Here we use double periodicity of ψ(z). The latter integral is equal to a
constant by (A.4), since it is calculated over the curve

∑
m1,m2

(L+m1 +
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im2), out of which ψ(z) is analytic. It is possible to prove that c0 =0 (for
details see ref. 25).

Note that the operator (15) can be described as follows. The inversion
transformation of the extended complex plane with respect to Tk =∂Dk is
defined in a standard way

z∗(k)=
r2
k

z−ak +ak. (A.6)

Then ψ(z∗(k)) is analytic outside of Tk (see ref. 1). The factor
(

r
z−ak

)2
in

(15) for m1 =m2 =0 appears because of the same factor in (13). The shifts
by m1 + im2 are used to obtain doubly periodic functions.

Next we apply P to the RHS of (A.1). First, observe that P(ψ1 −
1)(z)=ψ1(z)− 1. Further, applying P to (r/t)2ψ1(t) and using (A.3) and
(A.4) we obtain

P

[( r
t

)2
ψ1

(
r2

t

)]

(z)= 1
2πi

∫

L

( r
t

)2
ψ1

(
r2

t

)
dt

t− z

+
∑

m1,m2

′ 1
2πi

∫

L

( r
t

)2
ψ1

(
r2

t

)
dt

t−m1 − im2 − z , (A.7)

where
∑′
m1,m2

means summation over all integers m1, m2 except m1 =
m2 =0. Taking into account (A.3) and (A.4) we observe that (A.7) implies

P

[( r
t

)2
ψ1

(
r2

t

)]

(z)=
∑

m1,m2

′
(

r

t−m1 − im2

)2

ψ1

(
r2

t−m1 − im2

)
,

(A.8)

Here we took into account that
(
r
t

)2
ψ1

(
r2

t

)
is analytic in D−

1 and that
(

r
t−m1−im2

)2
ψ1

(
r2

t−m1−im2

)
is analytic in D1 for (m1,m2) �= (0,0). The rela-

tions (A.7) and (A.8) yield the functional Eq. (14) for N =1.

Remark 1.1. We derive functional equations (14) (N=1) from (A.1)
formally. The interchanging of the integral and the sum

∑
m1,m2

can be
justified using properties of the Eisenstein function E1(z). Generalization
to the case N >1 is straightforward.
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APPENDIX B. EISENSTEIN’S SERIES

In the present and previous papers we exploit the theory of elliptic
functions. This theory can be viewed as a generalization of the meromor-
phic functions on the complex plane to the meromorphic functions on the
torus (doubly periodic meromorphic functions).

Any function analytic on the extended complex plane C∪{∞} except
z=0 can be expanded in the Laurent series

φ(z)=
∞∑

n=0

φnz
−n. (B.1)

In order to obtain a periodic analog of (B.1) one has to replace z−n by
appropriate basic functions periodic with respect to lattice Q. The periodic
analog of z−n is given by the series first introduced by Eisenstein(32)

En(z) :=
∑

m1,m2

(z−m1 − im2)
−n. (B.2)

Here, m1 and m2 run over all integer numbers. The series (B.2) con-
verges almost uniformly and absolutely for n� 3. For n= 1 and n= 2 the
Eisenstein method of summation should be used:

En(z)= lim
M2→∞

M2∑

m2=−M2

lim
M1→∞

M1∑

m1=−M1

(z−m1 − im2)
−n. (B.3)

We use Eisenstein series instead of the Weierstrass functions because
they provide a periodic analog of Laurent series and also enable us to use
convenient computational formulas (see (B.10)) for En(z). It is possible to
use the Weierstrass functions ζ , P and their derivatives, but we prefer to
deal a periodic form of Laurent series

φ(z)=
∞∑

n=1

φnEn(z)+φ0. (B.4)

Any function φ analytic in a multiply connected domain D = C ∪
{∞}\∪N

k=1 (Dk ∪ ∂Dk) is represented in the form(26)

φ(z)=
N∑

k=1

[φk(z∗(k))+Ak ln(z−ak)], (B.5)
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where Ak are real constants, φk(z) is analytic in the disk Dk z∗(k) stands for
the inversion (A.6). Since φk(z∗(k)) is analytic out of Dk (see Appendix A),
the series (B.1) for this function can be used.

Any function φ analytic in a multiply connected domain D on the
torus Q is represented in the form(24)

φ(z)=
N∑

k=1

[φk(z)+Ak(ln σ(z−ak)+akζ(z−ak))], (B.6)

where φk(z) are analytic out of Dk and doubly periodic; σ and ζ are the
Weierstrass functions.

On the plane we use the series (B.1) for functions φ in (B.5). On the
torus we use (B.4) for functions φ in (B.6), which is why we deal with
series involving the Eisenstein functions in the main body of this paper.
Note that the effective conductivity is determined by the derivatives of the
complex potential (B.6) and (lnσ(z))′ = ζ(z)=E1(z)+S2z, −ζ ′(z)=P(z)=
E2(z)−S2 (see refs. 18 and 32, where S2 =π is established for the square
lattice).

In the formula (19) for a disk Dm (m= 1,2, . . . ,N ) and later in the
paper we introduce the function

E
(m)
l (z−ak)=

{
El(z−ak) if k �=m,

El(z−am)− (z−am)−l if k=m, (B.7)

where l=2,3, . . . . For simplicity we write El instead of E(m)l . In ref. 4 we
use another symbol σl(z−am) for El(z−am)− (z−am)−l . The use of des-
ignation (B.7) simplifies the final formula for the effective conductivity. For
instance, (B.7) implies

El(0) :=Sl, l=2,3, . . . , (B.8)

where

Sl =
∑′

m1,m2

(m1 + im2)
−l (B.9)

are the Eisenstein–Rayleigh lattice sums.
∑
m1,m2

in (B.9) stands for sum-
mation over all integer numbers m1, m2 except m1 =m2 = 0. The sums
(B.9) converge slowly. Efficient fast formulas for Sl are proposed in ref. 23.
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Note that for the square array S2 = π,S4 = 3.15121, S8 = 3.93885, S4l+1 =
S4l+2 =S4l+3 =0 (l=1,2, . . . ); Sl are non-negative numbers(19,20).

Sums (B.7) can be represented as follows(32)

El(z−ak)=
{

1
(z−ak)l + (−1)l

∑∞
s=0C

s
l+s−1Sl+s(z−ak)s if k �=m,

(−1)l
∑∞
s=0C

s
l+s−1Sl+s(z−ak)s if k=m,

(B.10)

where Csq = q!
s!(q−s)! .

APPENDIX C. AN INEQUALITY FOR COEFFICIENTS

In order to complete the proof of Theorem 4.1 we have to prove the
inequality (39) for s=0. To establish this inequality it is sufficient to show
that all corresponding terms in each approximation of ψm(0) are non-
negative. Note, that s=0 means that all shaking parameters are zeros, that
is ak form a periodic square lattice. Then N =1 and (20) becomes

ψ(0)(z) =1, ψ(q+1)(z)=ρ
[
ψ
(q)

0 E2(z)+ψ(q−1)
1 E3(z)+· · ·+ψ(0)q Eq+2(z)

]
,

q=0,1,2, . . . . (C.1)

Here we omit subscript k in ψ(z) and assume the inclusion is centered at
zero, a1 =0. Substitute z=0 into (C.1). Using (B.8) we have

ψ
(q+1)
0 =ψ(q+1)(0)=ρ

[
ψ
(q)

0 S2 +ψ(q−2)
2 S4 +· · ·+ψ(0)q Sq+2

]
. (C.2)

Calculate the derivatives

ψ
(q+1)
l = 1

l!
dlψ(q+1)

dzl
(0)=ρ(−1)l

[
ψ
(q)

0
(l+1)!

2!
Sl+2 +ψ(q−1)

1
(l+2)!

3!

×Sl+3 +· · ·+ψ(0)q (q+ l+1)!
(q+1)!

Sl+q+2

]
.

(C.3)

Here we use the relation for the derivatives of the Eisenstein series(32)

E(l)q (z)= (−1)lq(q+1) · (q+ l−1)Eq(z). (C.4)



Increase and Decrease of the Effective Conductivity 507

It follows from (C.2) and (C.3) that ψ(q)0 has the following form

ψ
(q)

0 =πqNq+1
∑

p1,p2,...,pM

βq,p1,p2,...,pMZp1,p2,...,pM , (C.5)

where

Zp1,p2,...,pM =Sp1Sp2 · · ·SpM �0. (C.6)

Therefore, ψ(q)0 is a sum of the products (C.6) with the coefficients
πqNq+1βq,p1,p2,...,pM . We have to prove that

βq,p1,p2,...,pM �0 (C.7)

for all q,p1, p2, . . . , pM .
We now explain that (C.7) implies (39) for s = 0. First, we compare

the terms in (C.5), (C.6) written in the case s = 0 (N = 1) with the gen-
eral terms discussed in Sections 3 and 4. In this case Zk0,k1,...,kM

p1,p2,...,pM from (30)
becomes (indices k0, k1, . . . , kM are omitted)

Zp1,p2,...,pM =Ep1(0)Ep2(0) · · ·EpM (0)

that gives (C.6) (see also (B.8)). Then (30) yields

Xp1,p2,...,pM =Zp1,p2,...,pM .

The representation (32) and the relation (29) for N = 1 imply (C.5). The
term (39) for s=0 can be considered as (38) with d=0. Then we obtain

Zp1,p2,...,pM =γp1,p2,...,pM (0).

It follows from (C.6) that γp1,p2,...,pM are non-negative for all p1, p2, . . . , pM
and the required inequality (39) for s=0 is reduced to (C.7).

We now prove (C.7) by induction in q. Although we only need
ψ(q)(0)�0 it is convenient to show

dlψ(q)

dzl
(0)�0, l=0,2,4, . . . (C.8)
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Since ψ(0)(z) = 1 and ψ(1)(z) = ρE2(z) = ∑∞
m=0(m + 1)!Sm+2z

m, (C.8)
holds for q= 0 and q= 1. Assume now that q is even and all coefficients
in dlψ(q)

dzl
(0) are non-negative (l = 0,2,4, . . . ). ψ(q+1)(0) is given by (C.2).

Combining this with the basis of the induction we see that all coefficients
of ψ(q+1)(0) are non-negative. It is also follows from (C.3) that all coeffi-
cients of dlψ(q+1)

dzl
(0) are non-negative (l=0,2,4, . . . ).

The proof of Theorem 4.1 is completed.
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